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_Abstract

A method for the optimization of structures to-satisfy flutter velocity
constraints is presented along with a method for determining the flutter
velocity. The material presented represents a summary of Ref. 1 through 5

which are a direct result of the research effort of this grant. A method

for the optimization of structures to satisfy divergence velocity constraints

is presented in Appendix B.
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1. Obtimization of Structures to Satisfy a Flutter Constraint

‘ In this section of the report a mathematical method for minimizing
the structural mass of a lifting surface which is subject to a specified
flutter velocity constraint will be presented. It will be assumed that
stfuctural parameters (cross-sectional areas, plate thicknesses, diameters
squared, etc.) are selected in such a way that the total structural mass
- is a linear function of these parameters. The optimiéation procedure
which will be presented is independent of the aerodynamic theory which

might be selected.



1.1 Velocity dradient Search

This routine is employed when it is desired to increase the flutter
velocity. The flutter velocity normal derivative is calculated at a point
and paramétgrs are varied so that a step is taken in the direction of
- maximum increase in velocity. The desired flutter velocity is reached
after several successive steps along a gradient curve in an iterative
fashion as from point A to point B in Fig. 1.

The desifed change in a design parameter during a velocity gradient
search may be computed from the following relation which was derived in

Ref. 1.:

2

n
APi =V i (Vv-v)/z V¥
] J.:]

(1)

where V* s the desired flutter velocity V 1is the current flutter
velocity, V ;= BWBPi and n is the total number of design parameters.
, ;

New values of the design parameters may be determined from the

relation

&

Pl =Pi +APE (2)

A new value of the reduced frequency k may be estimated from the

refation

ki =k+I k., &P (3)

This new value of k may be used as a starting value for search for the

true flutter velocity in a procedure for determining the flutter velocity.



112 Projected Gradient Velocity Search

This routine is employed to find a relative maximum of the flutter
‘Veloéity while the total mass of the structure is held constant. The
parameters are varied in_such a way that the search proceeds tangent to
a constant mass hyperplane in the direction of the maximum rate of
increase of the flutter velocity until a relative maximum is found which
lies within the bounds of the parameter constraints as from B to € in
Fig. 1. In Ref. 1 a procedure for seérching for a maximum flutter
velocity along a constant mass hyperplane was presented; however, the
step size in the search was selected by trial, this resulted in a slow !
convergence to the maximum flutter velocity for that hyperplane. |In
Ref. 2 equations were presented for approximating the step size for

moving from point B to C in Fig. }. These reiations are as fol}ows:

n dP, n n dP . d%1
S=-3 Vv, / 3 3 LT | (4)
j=1 o] ds j=1 h=l »jh ds ds -
where
dp . _ .
—lds = (V’j + 8 m’j)/zeo (5}
n . n 2
6] =-L m,V ./ m h (6}
j=1 »Jd ) =1
n 2 ) 1/2
28 = Z . V. + V te m o, . . . . . B .. i AR
°  }j=1 ( »J 1 ' 7

and where m is the total mass of the structure. New parameters may be

computed from the relation

P-j = PJ, + (de /ds)s (8)



1.3 Mass Gfadient Search

-This routine is employed whenever it is desired to reduce the flutter
velocity as from point € to point D in Fig. 1. A step is taken in the
direction of the greatest rate of decrease in the structural mass and the
process is repeated until the flutter velocity is less than or approximately
equal to the desired value.

The changes in the design parameters are éémputed from the following

equation which was derived in Ref. 1:

n '

Py = my (W E Vg . (9)

The above three search procedures were appiied to the design of a box
beam in Ref. | and 2. The results of this application indicate that
practical application of the above method to a real aircraft structure is

feasible.



1.4 Partial Derivatives of the Flutter Velocity

Two of fhe search procedures which were previously described require
the partial derivatives qf the flutter velocity with respect to the design
parameters. These partial derivatives may be found by considering the
equations.of oscillation of an aircraft strucfure which is in a state of

neutral stability, i.e.
[k =, (MA)U, =0 (10)

where K, M and A are the stiffness matrix, maés matrix ana aerodynamic
force matrix, respectively. Ui is an eigenvector corresponding to the:
eigenvalue Ai. The aerodynamic force matrix A is a function of the air
densitY, Mach number and reduced frequency k.

Expressions for the first partial derivatives of the eigenvalues with
respect to structural design parameters were derived in Ref. 1. These
derivatives may be expressed in the form

: [K,j - A (M’j + A’j)] U, (11)

where the letter in the subscript which follows the comma indicates a

partial derivative with respect to a design parameter, i.e.

X, . = 3r. /0P,
' J

1y
The superscript T in equation (2) indicates the transpose of the left-

hand eigenvector V where

V:[K - Ai(M+A)] =0 (12)



In the deéign process presented here it is convenient to.constrain
the derivatives of -ki and k such that they are pure réal. Then
velocity gradient search and the projected gradient velocity search witl
move from one neutral stable state to another neutral stable state for
the mode which determines the flutter velocity. The derivatives for

this case are given in Ref. 1 and Ref. 2 and are repeated here.

3;,] =R, - R, A]/Az | | (13)
k’j = = A/A, (k) -
where
_ T - '
Ry + A | =V [K,j *;M,j]ui (15)
_ T B8A , o
Ry v A ==V 5 4 (16)
| = (_])]/2

m

The first partial derivative of the flutter velocity Vf is given
by the relation

2 | -
Ve j = " bu k /K + bA; - /2ka, _ (17)

where o
=y

The second derivatives of the eigenvalues of equation (10) and the

“reduced ‘frequency when -the derivatives are constrained to be pure real are-

derived in Ref. 2 and may be expressed in the forms

Ai,jh = R3 - R2 A3/A2 {18)



and : k ., == A /A

jh A3/A, (19)
where .
R, + A, |l = VT K. -2 M. +A )
3 3 i L Tyl ,h Ak
-2 (M, +A .) - A, [M, + (azA/aE)/k k,hu (20)
i,h L s i s jh +J sh i
T T
PR Yt Y R Y
_ A -
Avs a k | (21)
a2 A
A ™ 2 kiRt wm Ko - (22)
ok -
T T | n T
\fi'Fi’jUi’h = Vi[K,j-hi(M,jm,j)}f:i Vi-[K’h-ki(M,h+A,h)]UiU]/(AE-A]) (23)
1#i '

The second derivatives of the flutter velocity with respect to the
design parameters may be found by differentiating eguation {(17) with

respect to a design parameter, then

Ve gn = (B/2kap) [ay p - 2y Ay /(23)
“Og ko A KK
+(2k’jk’h/k - k,jh)z Ai/k] | (24)

Alternate methods for finding the unconstrained derivatives of eigen-
values and eigenvectors were developed in Ref. 4 and 5. The "algebraic
method" of Ref. 5 may be used to find the first derivatives of the eigen-

values and eigenvector of the non-self-adjoint system of eigenequation

[k - A (M+A)]ui =0 (10)

..7_



with respect to an independent variable Pj by soiving the set linear

equations
u. .
c¢ 'y = pu, (25)
Y :
P,J
where i
! o
Com fmmmdme L (26)
: K - A (M+A)} -(M+A)Ui
and
0

L N (27

and where it is required that UTUi = 1.

The second partial derivatives of the eigenvalues and eigenvectors
may be found by differentiating equation (25) with respect to the inde-

pendent parameter Ph , then

. u, .
R P £ T - Lo _dad L
C . D ui + D ui c’h Ai ; : (28)

If Xx. . , U, ., and U,
i,] i,] i,h

i, jh and Ai,jh may be found by solving equation {28).

are evaluated from equation (25) then
U
The above process may be continued for any numberrof higher order
derivatives.
it should be noted tHatvthe deFiQéfives ¥6ﬁhd by using the.é]gébfaic
method are not constrained, and they may not be substituted into
equations {17) and (24) to find the first and second derivatives of the

flutter velocity; however if the reduced frequency is held constant in



equations (25) tHrough (28) and in the relations

1/2
i

Vf =bw,/k=b r""/k
: ,

then

Vf,j = b li,j/kai

and

v

Py R i

The derivatives of Ve from equation (30) and (31) will (in the

general case) be complex.

f,jh = b X, jh/kai - b l.,h/hkm

3

(29)

(30)

(31)



2. An Automated Procedure for Determining the Flutter Velocity

Efficient optimal design programs %or aircraft structures which are
subject to constraints on the flutter velocity require a rapid and
automatic method for evaluating the flutter velocity. In Ref. 3 a
computationa]ly efficient method for finding the flutter velocity is
presented. The method utilizes derivatives of the eigenvalues with
respect to the reduced freduency in a curve fitting scheme for finding
the critical roots of the flutter equation. The method 1s unaffected
by the coalescence of any of the eigenvalues.

In Ref. 3 the deriva?ives of the eigehva]ues were found by use of
" the methods of Ref. 1 and 2; however, the "algebraic'' method of Ref. §

could be more efficiently employed to find these derivatives.

.-.]0_



-1~

V  Flutter Velocity

Vi< V2< V3
v M Total Mass
3 : N\, < N\2< M3
V2.
,M3
.nﬂz

‘ Flutter Velocity Constraint
c /_ . :
b f/
A

7 /Q ST 7S ////////)<<

P.

!
Figure ]



Appendix A

..]2_

NI -



Published References and Abstracts

As a direct result of support of this grant the folliowing papers

were published:

1.

Rudisill, €.5. and Bhatia, K.G., "Optimization of Complex Structures
to Satisfy Flutter Requirements,'” AIAA Journal, Vol. 9, No. 8, August

1971, pp. 1487-1491,

Abstract

Equations for finding the partial derivatives of the flutter
velocity of an aircraft structure with respect to structural
parameters are derived., A numerical procedure is developed for
determining the values of the structural parameters such that a
specified flutter velocity constraint is satisfied and the
structural mass is a relative minimum. A search procedure is
presented which utilizes two gradient search methods and a
gradient projection method. The procedure is applied to the
design of a box beam.

‘Rudisill, C.$. and Bhatia, K.G., '"Second Derivatives of the Flutter

Velocity and the Optimization of Aircraft Structures,' AIAA Journal,

“Aol. 10, No. 12, December 1972, pp. 1569-1572.

Abstract

Equations for the second partial derivatives of the eigenvalues of
the flutter equation along with the eguations for finding the second
partial derivatives of the flutter velocity of an aircraft structure
with respect to the structural parameters are derived. These partial
derivatives are used to develop expressions for the step size in a
projected gradient search along a constant mass hyperlane. A
projected gradient search along with a gradient mass and a gradient
velocity search is used to minimize the mass of a box beam which
supports a lifting surface.

Rudisill, C.S. and Cooper, J.L., "An Automated Procedure for Determining

the Flutter Velocity," Journal of Aircraft, Vol. 10, MNo. 7, July 1973,
pp. hh2-444,

.. Abstract

N R

- A computationally efficient method for finding the flutter velocity

of a structure is5 presented. The method utilizes derivatives of the
eigenvalues with respect to the reduced freguency in a curve fitting

scheme to find the critical roots of the flutter characteristic equation.

The method is unaffected by the coalescence of any of the eigenvalues.
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Rudisill, C.5., "Derivatives of Eigenvalues and Eigenvectors for a
General Matrix," AIAA Journal, Vol. 12, No. 5, May 1974, pp. 721-722,

Abstract

A method is developed for finding all orders of the derivatives
of the eigenvalues and eigenvectors of a non-self-adjoint system of
algebraic eigenvalue equations. The method does not require a
complete eigenanalysis of the algebraic eigenvalue problem. The
method requires only the ejgenvalue and eigenvector whose derivatives
are sought and the method also requires the corresponding left-hand
eligenvector. ‘

Rudisil), C.S. and Chu, Yee-vyeen, "Numerical Methods for Evaluating

the Derivatives of Eigenvalues and Eigenvectors,' Accepted for

publication in the-AlAA Journal. Publication date will probably be

in the late spring of 1975, .
Abstract

Two numerical methods for computing the derivatives of eigenvalues

~and eigenvectors are developed. The first methed is an iteration
_method for finding the first partial derivative of the eigenvalues

and eigenvectors of a self-adjoint system of algebraic eigenvalue
equations. The iteration method will alse find the first partial
derivative of the largest eigenvalue and its corresponding eigen-
vector of a non-seif-adjoint system, but the method cannot be used

to find the derivatives of the remaining eigenvectors.

The second method will find all orders of the derivatives of the
eigenvalues and eigenvectors of a non-self-adjoint system of algebraic
eigenvalue equations. The method does not require a complete eigen-
analysis of the algebraic eigenvalue problem. The method requires
only the eigenvalue and eigenvector whose derivatives are sought.
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OPTINIZATION OF COMPLEX STRUCTURES
TO SATISFY DIVERGEMCE VELGCITY COMSTRAINT
Kumar G. Bhatiatand Carl §. Rudisill?
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ABSTRACT

)
Analytical expression fof evé]uating the partial derivatives of
the torsicnal divergence velocfty of an aircraft structure with respect
to design variab1e§ is derived. An optimization procedure to satisfy
.a specified divergence velocity is illustrafed,usﬁng gradient methods
and Finite*element representation, for a box beam with the lower and
upper values spec;fred for the des&gn variables. [t is shown that
there is a poss:biilty of serious designer Judgem°ﬂt error due to
inefficient performﬂnce of optimization methods against multlple
constraints. A 'dimension reduction technique' is proposed to help

in such situations,
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1. INTRODUCTION

’

in the recent past, there have been several publications dealing
with optimization with reSpect.to a static agroelastic.;onstraint on
the torsional divergence velocity £1,2,3,41%. McIntosh and Eastep [2]
presented 2 calculus of variations formulation for a tapered‘cant?lévered

wing with torsional stiffncss dominated by contributions from a thin

“outer skin. Mclntosh and Weisshhaar [3], and Armand and Vitte [4] used

transition-matrix approach of optjmal control theory. Mclntosh and

Weisshhaar tB] concluded that early optimism concerning the use of

U “t,,,cl._de.velqp ;.a,’_'.C] O-\E-C‘S!,,f D :Em?c}cgir'eeis ;S ' i.'c"J li:l~ t-i.:'oa-rp"rti:lie-' ,‘9 ?':* !::;a'-i-'-rd"e!:qi'y €Eui- Vsl §'-‘-‘p t“

et s L

transition-matrix approach must be tempared somewhat, and it may in

the long run prove most useful to adopt more sophisticated steepest
ascent or gradlent methods . Further, it appears that even for the
gradient methods to be computationally attractive for practical problems,
without excessive penalty in the computer time used to arrive at aﬁ
optimum solution, closed form analytical expressions should be derived
for the partiaj derivatives involved so that their computation does not
involve individual perturbation of each design variable and corresponding
evaluation of the objective function. This would be a very significant
consideration for problems with a large number of design variables,
and/or where evaluation of the objective function is expensive in terms

of computer time. |In the present paper, the authors' ailm is, therefore,

R S R P
PR SN SY PRAL IR R R T

torsional divergence velocity with respect to design variables, and to
present a practical mzthod for optimum weight design of an alrcraft wing

structurc subject to torsional divergence velocity constraint.

* . v
Numbers in square brackets Indicate references listed at the
end of papcer.



I1. PARTIAL DERIVATIVES OF DIVERGENCE VELOCITY

The governing characteristic equation for torsional divergence
of an aircraft wing structure in a static neutral state can be

expressed as, (seec Ref. (5.))

(K] = AlAD) (U} = 0 (1)
“where
[K] = torsional stiffness matrix, function of design
variables Pi’ symmetric matrix.
[A} = torsional air-force matrix, function of air

density and wing geometry, constant and real .
A = eigenvalue, equal to the divergence velocity
squared.

{U} = angular displacement of the wing

To define an associated row vector {V} of the :igenvector'{ﬂ};'

consider , l_
([K] - AlA]") (v} =0 | (22)

Taking the transpose of equation {2a) and using the symmetry |

property of [K] §Ee¥ds |
V(KD - ALA)) = 0 - (2)

Differentiation of the characteristic equafion {1) with respect

to a design vafiable P. yields

3{u
3p.

i i , i

Premultiplying equation (3) by'{\.’}| and simplifying by substituting
equation (2),‘re5ults in the equation
: o afr)
{v} P {u}

= i S (4)

2

3P, {_v}'m] (v}

g
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A similar expression can be derived using the flexibility
matrix instead of the stiffness matrix, in which case the characteristic

equation is given by

(1A} - 1Al (wy=o0 _ (5)
where [C] is the inverse of [K].

From equation {6) it can be shown that-

22 v Gl ‘
A = - P (6)

oF; B O N (1)

The partial derivatives of the divergencervelocity can be
quickly computed from either equation (4) or (6). The use of these

derivatives will be discussed in section Ill.



111, OPTIMIZATION PROCLDURE

Two general approaches to optimization have %ﬁvolved thus far:
-maximizing a certain eigenQalue for fixed mass, or minimfzfng the mass
for a fixed eigenvalue [2].‘ The authors use the fTirst approach, which
is equivalent to projected gradient method with elgenvalue as the
objective function, in conjﬁncf?on with gradient mass and gradient
velocity methods. This procedure is described. in detail in the
authors' earlier paper [6]. The optimum design with divergence.
velocity éénstraint will be illustrated for a three bay box beam

.(See Figure 1) with twé?ve désign variables having uﬁper and lower
constraints.

The optimization program is independent of the formulation used
for the air—forée matrix. However, significant éimplification is
obtained when the air-force matrix J[Al is symmetric, in which
case equation (4) is simplified to

w12
3) L D

B Al (u)

This simplification would not be achieved uéing the flexibility
matrix. Thus there is substantial computational advantage for the case
of symmetric air-force matrix, if the stiffness approach is used.

For the humerical example presented in this paper, a diagcnai air-force
matrix was used [5]. ; |

Table 1 lists the results obtained from the optimization program

for the box-beam of Figure 1. Two sets of values for the design



variables were used as initial input to the optimization program.
The mass- Optlledtlon was suchct to a tors:onai dlvergence velocity
constraint of 600 ft./sec. with upper and lower constraints specified
for all the 12 design variables. These constraints were same for
both the cases of initial design values.

For the case 1, an optimum design was very quickly arrived at
in two design cycles. A design cycle here defines a step taken in the
multi-dimensional space of design variables during an execution of
pFOJECted gradient, mass gradient or velocity gradient search, each
design cycle involves computatlon of stiffness matrix and eva]uatlon
“of the efigenvalue problem in addlt:on to computation of derivatives.

The final values for P_. p and PIO seem to be numerically same as

2’ 3

the corresponding initial values. Actually the final valles are
slightly higher than the initial values, but due to a very small
numerical difference this is not apparent from the number of digits

listed in the table. Therefore, the optimum arrived at for case 1,

-appeal‘S to be a free optlmumji'é-;me a(eSi‘gm PaYame,fel’S are nct agamﬂ’ ary

Constyaint.

For the case 2, the lower constraints for P P8 and P

7’ g

slowed down the optimization procedure considerably, and it took 47

design cycles to reach a mass apprOX|mate1y 40% higher and a d;vergenCe.
veloc:ty approximately 0. MS% higher than for the previous optimum attained.
This suggests the possibility of serious designer judgement error

duc to inefficient performance of optimization methods against

mpltiple constraints. To circumvent this, the authors suggest the

use of "dimension redﬁction technique’. The proposed technique would

monitor the partial derivatives of the relevant eigenvalue with respect

to the desigd paramcters which are against the constraints, and from



these determine the design parameter which would tend to violate the
constraints if a step in the desired direction wére taken. Such
parameters would be then held constant‘for the next step, thus
effectivély reducing the dimension of the design parameter space

for this step. At the new point thus reached, a new design cycle
would begin and partial derivatives of the relevant eigenvalue

with respect to all the design variables would be computed, and-

. the above process repeated. It is expected that such a technique
would reduce the number of design cycles required for problems

_where constraints are encountered.

v

k.



CONCLUSITONS

The closed form analytical expression derived for'the partial
derivatives of divergence Qe]ocity with respect to é design
parameter is useful in the gradient type search Eroceeres. The
example solution illustrates its use. It scems that where lower
constraints aré specified for the design variables, a logical

initial poiht should preferably include applicable lower constraints.

"This view is substantiated by authors experience that gradient

velocity procedure operating in the neighborhood of lower

-constraints is very fast and effective in increasing the velocity

to the desired value, since in increasing the velocity it would

usually tend to move away.From the constraints. For the‘case where the
constraints slow down the gradient methods, the dimension reduction
technique may improve their performance. The authors hope to explore

the potential of this method in their future work.

m».z.-:;l
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TABLE 1 Initi{al and Final Parameters with Constraints

Area of Lohgitudinals Front & Back Web Thickness Top & Bottom Web Thickness Rib Thickness Totaiéqfver5§§ce
(Sa. in.) (x 107" in.) (x 107" in.) (x 107! in.) I I
Bay 1° . : Bay 2 Bay 3 Bay 1 | Bay 2 Bay 3 | Bay 1 Bay 2 Bay 3 Bay 1 Bay 2 Bay 3
Lo P "3 N A Pe 1 P7 | Pg P9 "1o Ph Py2
2 0.33264 | 0.33264 [ 0.33264 | 0.13332 | 0.13332 | 0.13332 | 0.0666 - | 0.0666 | 0.0666 | 0.0666 | 0.0666 | 0.0666 ]0.92 | 55%.23
- 5~ ' ‘ = : : A - ' ' !
-g _i:’ 3o 2.000, | 2.000 [ 2.000, | 0.800 | 0.800 | 0.800 -] 0.500 | 0.400 | 0,400 0.400 | 0.400 | 0.k00 |5.54 | 1370.41:
- - w _ o ' : . ‘
‘2 § 0.33284 | 0.33264 | 0.3326% | 0.13332 | 0.13332 | 0.13332 | 0.0666 - 0.0656_ 0.0666 | 0.05656 0.0666 - | 0.0666 |0.52 | 555.23
@ 3 : | f ' : 3 : 5 ' |
;.f § 8.0064 8.0064 . [ 8.0064 | 3.204. {3,208 3.204 1.596 1.596 1.596 1.596 | 1.536 1.596 22.15] 2738.71%
(8] Q. . .
> : . : ) - :
2 _10.33336 o.33é6i+_ 0.33264 | 0.1362 " | 0.13464 | 0.133368] 0,081228] 0.082284 0.072672| 0.0666 | 0.066756| 0.067008}0.95 | 595.5
) g e | |
- .
E ;z o 10.3855 | 0.3865 | 0.3865 | 0.35184 | 0.3518% [ 0.3184 | 0.0666 | 0.0666 | 0.0666 | 0.3066 | 0.3066 | 0.3066 |1.30 | £02.65
oo | ! .

* Beyond the range of aerodynahic theory used.

Case 1 -~ 2
Case 2 = 47

a) Number of design cycles:

FOLDOUT FRAME

t ‘ ‘ :' ‘ to
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